TIG Welding

Kyle Westmoreland

Brad Watson

Overview

TIG=Tungsten Inert Gas Welding

Uses a tungsten electrode to produce an electric arc. The weld is shielded by a gas typically argon and a welding rod is added to produce the weld

<u>Uses</u>

- TIG welding can be used to weld Magnesium, Aluminum, Steel, Stainless Steel, Brass alloys, Silver, Cast Iron and Copper
- Can weld very thin sections and metals that can not be easily welded with other types of welding.

Safety Concerns

- Always be sure to wear flame resistant clothing like cotton when welding. Synthetic materials burn easily and can melt to your skin.
- Before Welding be sure area is properly ventilated. Use adjustable exhaust fan when welding in shop.
- Always wear welding gloves and a welding helmet with a lens shade of 10 or 11.
- <u>Caution</u>: Welding produces high temperatures even after welding is completed
- Ensure the piece you are welding is safe to weld (ie: a container containing flammable liquid).

TIG Welder

D.

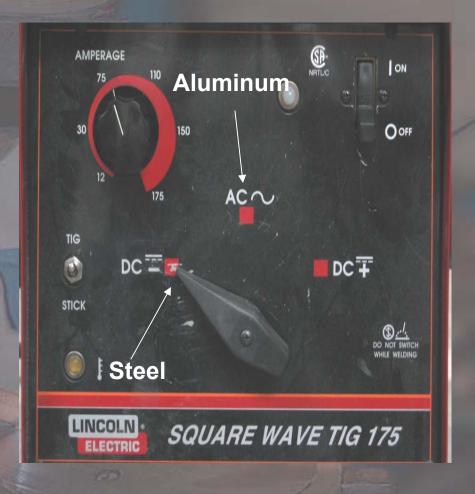
Electrodes and Gloves

Helmets

1 1 20

Gas Regulator

Prinaust


Filler Rods

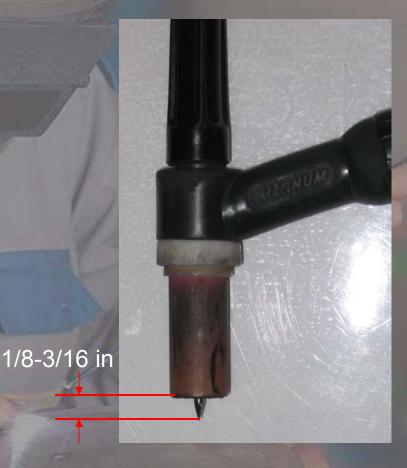
Getting Started

- Choose the correct electrode and filler rod based on the type of material and thickness of weld (see Aluminum TIG Specifications)
- Prep surface by removing any corrosion or oil with a wire brush to ensure a clean strong weld.
- Ensure others around you know you are welding and there is no potentially flammable materials.

Setting up the Machine

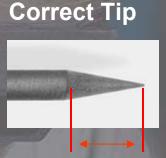
- Steel: Use DC straight polarity and an electrode with a red end (2% Thoriated). When welding steel with DC straight polarity make sure the tip is ground to a conical point (see Preparing Steel Electrode).
- Aluminum: Use AC current and an electrode with a green end (100% Tungsten) Ensure that the tip is round properly (see Preparing Aluminum Electrode).
- Other Material: Consult welding reference or experienced welder.
- *Amperage varies depending on material thickness and type of weld.

Aluminum TIG Specifications


-		Amperes AC Current			-	Argon Flow(20psi)		
Stock	Joint		Horizontal		Electrode	(_		Filler
Thickness	Туре	Flat	& Vertical	Overhead	(in.)	lpm	cfh	Rod(in)
1/16"	Butt	60-80	60-80	60-80	1/16	7	15	1/16
	Lap	70-90	55-75	60-80	1/16	7	15	1/16
	Corner	60-80	60-80	60-80	1/16	7	15	1/16
	Fillet	70-90	70-90	70-90	1/16	7	15	1/16
1/8"	Butt	125-145	115-135	120-140	3/32	8	17	1/8
	Lap	140-160	125-145	130-160	3/32	8	17	1/8
	Corner	125-145	115-135	130-150	3/32	8	17	1/8
	Fillet	140-160	115-135	140-160	3/32	8	17	1/8
3/16"	Butt	190-220	190-220	180-210	1/8	10	21	5/32
	Lap	210-240	190-220	180-210	1/8	10	21	5/32
	Corner	190-220	180-240	180-210	1/8	10	21	5/32
	Fillet	210-240	190-220	180-210	1/8	10	21	5/32
1/4"	Butt	260-300	220-260	210-250	3/16	12	25	3/16
	Lap	290-340	220-260	210-250	3/16	12	25	3/16
	Corner	280-320	220-260	210-250	3/16	12	25	3/16
all Ser	Fillet	280-320	220-260	210-250	3/16	12	25	3/16

*Miller, R.T. Welding Skills 2nd Edition. 1997 American Technical Publishers Inc. Homewood, Illinois 60430

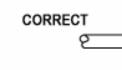
Note: When welding thicker aluminum with shop welder(>.25 in) try to preheat material with oxy-acetylene torch.


Adjusting Torch

- Insert electrode by unscrewing the end of the torch and then sliding electrode into the collet.
- For general use the electrode should extend 1/8 to 3/16 of an inch beyond the cup to ensure 1/4 the shielding gas shields the weld.

Preparing Steel Electrode

- Make sure tip is free for build up and ground to fine point
- Using machine sharpening grinder to grind to a point


Incorrect Tip

≈ 2.5 x Diameter

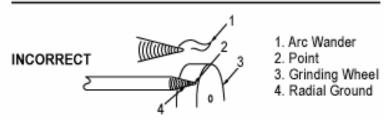

Tungsten Grinding

Diagram 5

Stable Arc
 2. Flat
 3. Grinding Wheel
 4. Straight Gound

Ideal Tungsten Preparation - Stable Arc

Wrong Tungsten Preparation - Welding Arc

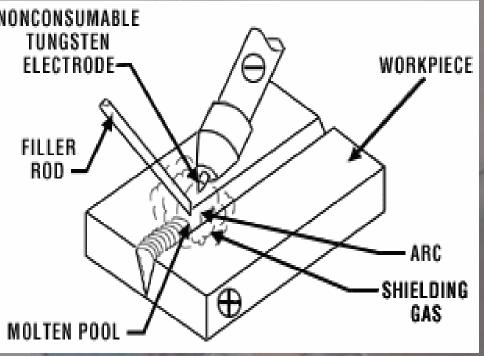
Preparing Aluminum Electrode

- Aluminum tip created using a piece of copper to generate an arc.
- Set amperage to max setting.
- Hold Electrode 1/8 in from copper and press peddle.
- Heat generated causes tip to melt in to smooth ball.

Incorrect Tip

Welding Technique

Hold torch approximately 75-80 degrees from horizontal and the filler rod 15-20 degrees from horizontal.


Welding Technique

 Hold the tip of the electrode about 1/8" away from piece and press the pedal down until an arc is created between the electrode and work piece.
 Keep peddle depressed until puddle is created.

• Ensure the tip of the electrode does not touch the molten weld puddle. This cause electrodes to become contaminated with weld material.

Welding Technique

•After puddle is created use a circular motion or repeated crescent motion to move puddle while adding filler rod.

 When welding thinner materials a heat sink, consisting of a metal block, can be used to dissipate excess heat. Place this heat sink underneath material when welding.

Welding Demonstration

TIG Welding Demonstration

Additional References

- Mentors for 2005-2006:
 - Phil Arpke
 - Mike Harper
- Books

Miller,R.T. Welding Skills 2nd Edition. 1997
American Technical Publishers Inc. Homewood, Illinois 60430
Welding Skills 2nd Edition Author: R.T. Miller Publisher: American Technical Publishers Inc.
U of I Course
Agricultural Systems Management 107 (ASM 107)

Thanks to:

Phil Arpke Adrian Gomez Mike Harper Russ Porter